RIM (Reaction Injection Molding) for Gatan

Get More Information

Tag Archives: industrial design

RIM (Reaction Injection Molding) for Gatan

Gatan, Inc. took a very hard look, and applied a very sharp pencil, when analyzing the cost of producing parts in Cast Urethane.  “It was just costing us a fortune…” offers John Duffy, Materials Manager SP&H, Supply Chain, Gatan, Inc.

The decision to use RIM was simple.  The RIM Process provided important values: Unlimited Mold Life, Higher Tolerance, More Robust Parts, and Significantly Lower Cost. When the time came to shift production of the company’s premier parts to the new process, research lead Gatan to Kenilworth, New Jersey, and the expertise of one of the country’s leading RIM manufacturers of first-class plastic instrument housings.

Click here to read more…

Fourth Term U.S. Congressman Visits Exothermic Molding on National Manufacturing Day

National Manufacturing Day gives manufacturers an opportunity to open their doors and address modern manufacturing in America.  Items pivotal to the nurturing and growth of manufacturers are examined such as the skilled labor shortage in the U.S., and the educating of future generations to continue the legacy of the industrialized sector.  NMD is a key opportunity to take charge of manufacturing’s public image, and to ensure the ongoing prosperity of the entire industry.  The day and its surrounding activity is designed to examine common concerns and challenges facing future generations.
Congressman Leonard Lance (NJ-07), Vice Chair of the House Energy and Commerce Subcommittee on Commerce, Manufacturing and Trade, visited Exothermic Molding Inc. as part of a multi-stop tour for National Manufacturing Day.  Exothermic Molding builds high quality Reaction Injection Molded plastics, and Lance visited the facility to view its contemporary equipment and discuss the state of manufacturing in New Jersey with the company’s president, Paul Steck.
“American manufacturing produces safe and reliable goods and commodities that the world economy counts on.  An American brand guarantees a safe product with high-quality workmanship created by a skilled workforce.  I saw that first-hand at Exothermic Molding,” said Lance.1
​The Seventh Congressional District of New Jersey includes nearly 600 manufacturing facilities that employ 40,000 employees, according to the National Association of Manufacturing.  Lance sits on the House Energy and Commerce Committee and serves as Vice Chair of its Commerce, Manufacturing and Trade Subcommittee.
Paul Steck says, “We have been fortunate to host two prominent legislators at Exothermic Molding.  In 2013, New Jersey State Senate Minority Leader Tom Kean, Jr., toured our company showing a great interest in the manufacturing industry and its future in the state.  Now, Congressman Leonard Lance has brought federal interest to our shop. We are flattered to serve as a representative of manufacturing, and the small business, in New Jersey and the United States.” 2
While manufacturing continues to be challenged in the country, Steck observes that the future is looking modestly brighter.  He cautiously notes that contract manufacturing seems to be making a comeback.
Exothermic Molding, one of the pioneers in the RIM industry, was founded circa 1972 and provides Reaction Injection Molded (RIM) parts to the medical, electronic, and lab instrument market. Since then the company has expanded into many other applications and markets, but remains progressive in the RIM process.​

1 Source: Tap into Kenilworth – “Lance Visits Exothermic Molding in Kenilworth on National Manufacturing Day”.       www.tapinto.net.

2 Source:  Unpublished Interview: Steck, Paul. Interview by Joseph R. Passarella.  Exothermic Molding, Kenilworth, New Jersey.
Paul Steck is President and CEO of Exothermic Molding Inc., a 
company specializing in the development and manufacture of high quality molded plastic parts often used as electronic enclosures in the Medical Devices, Laboratory Instruments and Technology markets.  The company, considered one of the leading RIM manufacturers in the United States, has successfully served these industries for over forty years.

JBT Corporation: Replacing Sheet Metal to Maximize Value


Reaction Injection Molding of plastic parts is a quality driven, price alternative compared to many manufacturing processes including sheet metal. With RIM, one can develop a sculpted, structural design that minimizes hardware and includes value-adding features, all at a price point that is cost-effective for low to mid-range volumes, especially for larger complicated parts.   JBT Corporation, the world’s largest supplier of Automated Guided Vehicle (AGV) Systems, turned to Exothermic Molding for the tooling and manufacturing of two key housing parts, compartment covers that would afford them both the value, look and finish found in RIM.


Company Overview

JBT Corporation is a leading global supplier of Automated Guided Vehicle (AGV) Systems. With over 125 years of experience in materials handling and 25 years’ experience in AGVs, JBT has the corporate strength and experience to make each AGV system a success.  As a key supplier of AGV Systems since 1985, JBT Corporation has delivered over 400 AGV systems including 3,500 AGVs.

The company employs the world’s largest group of Automated
Guided Vehicle experts, each bringing a unique perspective gained from decades of experience.  These AGV experts continually develop the most advanced AGV technology, providing guided vehicle solutions for unique material handling challenges.  JBT’s AGV systems provide safe, unmanned movement of raw materials, work-in-process, finished goods and waste in manufacturing, and storage/retrieval of products in warehousing facilities.  Automated Guided Vehicle (AGV) Systems by JBT provide automated material movement for customers in a wide variety of industries including the automotive, chemicals/plastics, hospital, printing, FMCG (Fast Moving Consumer Goods), food & beverage, pharmaceutical, warehousing & distribution, and manufacturing industries.

Changing from Sheet Metal to RIM

cntrblnc wmlegendWhen developing the latest counterbalance AGV design, JBT
wanted to maximize the value delivered to its customers.  It turned to Insync Design to assist with the form and structure of its AGV.  Insync outlined the strengths and weaknesses of multiple fabrication technologies and RIM was chosen for the upper and front covers because of specific benefits that added value to the design and durability of the AGV housing:

“Insync Design Corporation used the RIM Plastic process in the Industrial Design of JBT’s new AGV, because of its durability (in a sometimes hostile environment of material handling), parts consolidation, and the ability to give the overall appearance of the machine a clean contemporary ID, while achieving design lines not achievable, in the old plate and weld process (of sheet metal).”

Stephen Miggels
Insync Design Corp

Insync referred JBT to Exothermic Molding for manufacturing the high-grade RIM molded plastic covers as an alternative to sheet metal. Two plastic RIM covers replaced a large metal cover that was used on the previous design. These plastic covers were an excellent solution for JBT because the modern styling matches the advanced robotic hardware and software technology used on the AGVs. In addition, the cost per piece of the plastic covers was significantly less than the complex, large metal fabricated cover.

Process Comparisons

At first glance, sheet metal looks to be a very low cost option for part production and modification, but this process sacrifices many design features and often adds to part cost.  RIM allows for much more intricate and sophisticated design geometries compared to sheet metal.  Engineers enjoy much greater design freedom to create attractive, sculpted parts. Features on the inner or outer surface of a sheet metal part must be cut out, welded, or bolted on as a secondary process. With RIM these features are molded into the part, reducing assembly, adding value to the overall design, and ultimately lowering unit costs.

An additional benefit worth noting is that materials cannot be encapsulated in sheet metal. Only RIM can encapsulate glass, metal, wood, wiring, circuit boards, and other parts for optimum protection and strength.

Both processes are capable of an excellent finish, however Exothermic Molding takes RIM part finishing to a higher level with superior quality clear-coat “automotive grade” finishes, advanced paint texturing techniques, and multi-color silk screening for improved branding.  Sheet Metal can be more costly to paint, as labor time associated with special masking and treatment of joints exceeds that associated with RIM.

JBot wmlegendAs JBT discovered, the cost of RIM produced parts for their AGV’s is significantly less costly than the large metal fabricated cover.  Sheet metal might be a cost-effective option for small production volumes, but RIM should be taken into consideration if the part design is complex or if there is a long term product life.  RIM molding can incorporate features, such as structural stiffeners and mounting hardware, directly into the mold and the result is less secondary part assembly.  Also, and important for the AGV application, RIM plastic parts serve as an enhanced sound and vibration insulator when compared to sheet metal.  The parts are generally lighter weight and highly corrosion resistant.

JBT continues to test the bounds of imagination with designs that improve a full array of ruggedly built AGV types to meet their customer’s toughest material handling challenges.  The RIM covers have already been incorporated into the latest Tug type AGV design and the covers will be incorporated into future standard vehicle designs.  Exothermic Molding is prepared to meet these rigorous current and future design requirements and deliver vehicle parts that reduce material costs while standing the test of imagination and durability.

Case Study – Solidscape: The Evolution into RIM Casements

The Reaction Injection Molding of plastic parts exceeds Industrial Designers and mechanical engineering expectations as a quality driven, price alternative to many manufacturing processes — the most noteworthy of those methods being Thermoforming.  In an unpublished video interview with Mark Magee, Senior Design Engineer of the visionary 3D printing equipment manufacturer, Solidscape, Inc., a Stratasys company, Mark lends the benefit of his experience working in RIM, and tells how RIM has become the “go to” process when Solidscape manufactures its industry leading printers.

To learn more click here:  Exothermic Molding:  Solidscape Case Study

RIM Molding vs. Urethane Casting (Rubber Molds)

Both Reaction Injection Molding and Urethane Casting offer a good deal of design freedom, including the ability to mold-in features and encapsulate materials.  They differ in the fact that only RIM allows for part design with significant wall thickness variations—typically from .125″ to 1.125″ in the same part.

RIM as well as urethane casting can be used to encapsulate a variety of materials, from metals to electronics. Each also produce a high quality finish, and take paint, silk screening and texturing well for improved branding.

Urethane casting in silicone rubber molds is often the more cost-effective choice for small production volumes, but rubber molds have a limited cycle life and long-term production can become cost prohibitive compared to RIM. Both processes are appropriate for producing molds for quick turnaround.

The initial tooling costs of urethane casting are lower than that of RIM. Tooling modification is also very cost-effective, but when aiming for production parts, RIM becomes the better choice cost-wise.

OTHER DESIGN CONSIDERATIONS: Many companies utilize rubber molds for years prior to converting to more permanent tooling, which can end up being extremely expensive. Because RIM can bridge the gap between prototype and production with parts that are precision molded instead of fabricated or cast, it can actually be most cost effective to utilize RIM in lieu of rubber molding.

Reaction Injection Molding vs. Aluminum Casting. Very large, light-weight, low-cost parts without the design limitations.

Continuing our exploration of the right molding process for part design (“Determining the Right Molding Process for Part Design”), this blog entry considers RIM Molding vs. Aluminum Casting.

Many features in aluminum casting can be made in the cast, but critical features must be machined as a secondary operation. RIM allows these features to be molded in for reduced handling and reduced cost.  Both methods allow for variable wall thickness—down to 0.60” for aluminum casting, and from 0.12” to 1.12” in RIM. Another major difference is appearance quality. A grinder is used for cleanup in aluminum casting, while RIM Molding delivers an excellent finish out of the mold.

Materials cannot be encapsulated with aluminum casting. Only RIM can encapsulate metals, electronics, and other parts for optimum protection and strength. Compared to RIM, the finish quality of aluminum cast parts is low; and RIM can take paint, silk screening and texturing better for improved branding.

Both processes are appropriate for small run volumes, but are not cost-effective when dealing with larger quantities (over 500/mo.). RIM tooling lead times are shorter than for aluminum casting. Both RIM and aluminum casting require a low up-front cost, although RIM is slightly more cost effective if tooling modification will be needed.

Another Design Consideration: With RIM, you can create very large, light-weight, low-cost parts that would otherwise be limited in design with aluminum casting.

Learn more at : www.exothermic.com

Reaction Injection Molding vs. Sheet Metal. Sheet metal may be a low cost option, but what are you willing to sacrifice?

Continuing our exploration of the right molding process for part design (“Determining the Right Molding Process for Part Design”), this blog entry considers RIM Molding vs.Sheet Metal

Sheet metal is a very low cost option for part production, but with this process you sacrifice many design features and often add piece counts to final assembly. RIM allows for much more intricate and sophisticated form development compared to sheet metal.

Any features on the inner or outer surface of a sheet metal part must be cut out, welded, or bolted on as a secondary process. With these features molded into a RIM mold, you can reduce assembly, add value to the overall design, and ultimately lower unit costs.

Materials cannot be encapsulated in sheet metal. Only RIM can encapsulate metals, electronics, and other parts for optimum protection and strength. Both processes produce a high quality finish, but also take paint, silk screening and texturing well for improved branding.

Sheet metal is the most cost-effective option for small production volumes, but RIM could be taken into consideration if the part design is complex. While sheet metal tooling
turnaround is very quick, RIM Molding can incorporate features from production molds that require less secondary costs than sheet metal.

Up-front tooling costs of sheet metal are lower than that of RIM tools, and modifications to the design can also be made at low costs. The trade-off is that many design features cannot be incorporated into sheet metal like they would with the RIM process, and non-rectilinear sheet metal parts become cost prohibitive in production.

Other Design Considerations: Using RIM molding will yield a much more attractive, sculpted design that is lighter in weight and has better chemical resistance and insulation properties.

RIM Molding Surpasses Thermoforming With Multiple Benefits

Continuing our exploration of the right molding process for part design (“Determining the Right Molding Process for Part Design”), this blog entry considers RIM Molding vs. Thermoform Molding

Both of these processes are valuable for producing large-sized parts, but the design flexibility of RIM molding will make it a better choice for complex parts. Since thermoforming is a sheet forming process, it cannot produce variable wall thickness or internal details

without time-consuming, manual gluing of additional pieces to the thermoformed part. Only RIM gives the designer the flexibility to produce parts with significant wall thickness variations of up to .125” to 1.125” in the same part. Any inside features in a thermoformed part must be bonded on secondary, whereas RIM can incorporate all features into the mold for reduced assembly and lower unit cost.

The temperature needed for RIM molding is low enough to prevent damage to encapsulated materials.  Antennas, metals, electronics, circuits and other features can be insulated to increase mass, strength, burst protection and branding of parts. Encapsulation cannot be done with the thermoforming process.  Produced thermoformed parts have the quality finish of the sheet material, but RIM parts take paint, silk screening and texture well for improved cosmetics.

Both processes are appropriate for small run volumes and for producing molds for quick turnaround.  RIM and thermoforming tools also both require a low up-front cost, but RIM tools are easier to change and will therefore be more cost-effective if market feedback shows that part features should be modified.
Other Design Considerations: Thermoformed parts are only as strong as their outside shell, and can often “tin can” or blemish from inherent process variation. RIM parts typically hold tighter tolerances than thermoformed parts. Stiffening ribs can be molded into RIM parts to produce high strength products in any size.

Read more about it in our white paper, “Determining the Right Molding Process for Part Design.  How RIM Molding Advantages Compare with Traditional Production Technologies”.

Download the paper at (www.exothermic.com).

RIM Molding Vs. Structural Foam Molding. Are the design considerations different, or is it just a matter of cost?

Continuing our exploration of the right molding process for part design (“Determining the Right Molding Process for Part Design”), this blog entry considers RIM Molding vs. Structural Foam Molding.

Reaction Injection Molding (RIM) is a low cost tooling process geared towards high quality Polyurethane and Urethane plastic parts with Class A surfaces. RIM Tooling especially molds of Aluminum is lower in cost than other plastic manufacturing methods. However, based upon a variety of raw materials, architectural detailing, painting and finishing requirements, the price per part may be slightly higher.  The diverse functions and project freedoms are why more designers and OEM’s are turning to the RIM process as a preferred solution.

Structural foam uses essentially the same process as regular Thermoplastic Injection Molding, so the design considerations of using the Reaction Injection Molding process versus structural foam are similar, but the costs are different with added foaming agent. Thermoplastic structural foam molds require higher process pressure and cost roughly double that of RIM molds, while the structural foam parts tend to be lower in cost. The decision here often relates to quantities.

Other Design Considerations: While RIM is the more cost-effective option for low volumes, structural foam molding can be used for jobs with higher quantities where higher tooling costs are offset by lower part costs. Neither process is the best for production of high volumes.

Read more about it in our white paper, “Determining the Right Molding Process for Part Design.  How RIM Molding Advantages Compare with Traditional Production Technologies”.

Download the paper at (www.exothermic.com).

RIM Molding. Thermoplastic Injection Molding. Which is the best way to go?

Reaction Injection Molding, or RIM, can be a great alternative to achieve the mainstream look of molded parts without the high tooling costs or volumes needed for typical thermoplastic parts. Both processes allow incorporation of many features into a mold, but only RIM gives the designer flexibility to produce parts with significant wall thickness variations—typically from .125” to 1.125” in the same part. RIM can also produce high strength large parts at a lower price because mold pressures and costs are significantly lower compared to thermoplastics.

While both processes provide a solution for encapsulating metal, the low temperature, low pressure RIM process is also safe for electronics and other material encapsulation. Injection molded parts have a higher quality finish than RIM urethane parts, although RIM parts take paint and silk screening well for improved cosmetics and branding.

RIM is valuable for producing low volumes at a low cost, but for volumes over 500 per month, thermoplastic injection molding often becomes the more cost-effective processing option. Because RIM molds can be machined from aluminum instead of steel, the up-front tooling costs are typically less than one half that of a comparable thermoplastic mold. This is particularly beneficial when part volume is low. Since RIM tools can be made of softer materials, changes to tooling are also much more cost-effective than changes to thermoplastic steel tools.

Read more about it in our white paper, “5 Reasons to Use RIM for Complex Parts”. Download the paper at www.exothermic.com

More Information

Industrial Designers

Get inspired, share your work, and learn more about RIM.